-
- ATOS Q | 全新工业级量测技术
- GOM ScanCobot | 人机协作全自动量测系统
- ATOS 5 for Alrfoll | 专为航太量身打造的精密仪器
- ATOS5 | 工业级3D量测
- ATOS5X | 自动化全车检测
- ATOS Capsule | 高精度光学测量仪
- ATOS Core | 中小型工件3D量测
- ATOS Compact Scan | 高移动性3D量测
- ATOS ScanBox | 全自动3D量测
- GOM Scan1 | 小型三维扫描仪
- ATOS PLUS | 自动化全域定位
- TRITOP | 光学式三次元
- GOM Probe | 光學追蹤探針
- T-SCAN hawk 2 手持式三维扫描仪
海浪对离岸结构的影响-FLOW 3D 流体仿真
本文由Stress Engineering Services的Anup Paul和Chris Matice提供
离岸平台甲板下的静水空隙是重要的设计参数,并由极端设计条件下所需的最小空隙决定。对于像半潜式平台和张力腿平台这样的结构,预测最小空隙和甲板撞击事件的概率是具有挑战性的。
一个SPAR对12米高的波浪的动态反应
由于气隙设计中必须考虑到与平台腿的相互作用,陡波表现出显著的非线性行为和波幅放大。如果在恶劣环境中出现负气隙,预测由此产生的甲板冲击载荷就变得非常重要。随着石油和天然气生产进入更深的水域,需要浮式结构,并且甲板高度受到重量和稳定性要求的限制。准确预测甲板与自由水面的间隙和甲板冲击载荷对于预测这些结构在恶劣环境下的性能至关重要。
计算流体动力学
计算流体动力学(CFD)方法被广泛应用于各种行业,以研究流体流动和热传递行为。CFD结合流体体积(VOF)模型,可以有效预测离岸平台的空隙和波浪撞击载荷。VOF方法可以准确预测自由液面的形状和非线性波浪行为。对于浮动系统,CFD可以与有限元分析(FEA)相结合,以预测平台在波浪撞击期间的动态和结构反应。
SPAR平台的波浪相互作用
图1为SPAR对10和20米波浪的动态反应。这两个波浪均为20秒的周期,并使用线性波浪边界条件生成。SPAR被建模为质心有6个自由度的刚体。
图2为SPAR质心的垂直位移。
图3为波浪相互作用引起的SPAR的水平力。
图1:SPAR的动态反应
图2:SPAR的垂直位移
图3:SPAR上的水平力
波浪对重力式结构(GBS)的影响
图4为波浪对重力式结构(GBS)甲板的影响。平均水深为151.1米,初始空隙为21.7米。入射波浪高度为40米,周期为17秒。
图5为波浪对顶部甲板的GBS水平和垂直力的影响。
力的急遽增加对应于波浪对GBS前端的初始冲击和对甲板顶部的二次冲击,如图4所示。
图4:波浪对GBS的影响
图5:由于波浪对甲板的冲击而产生的GBS受力历史
资讯中心
NEWS
关注我们